ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

International Journal of Heat and Fluid Flow 29 (2008) 540-544

International Journal of

HEAT AND
FLUID FLOW

www.elsevier.com/locate/ijhff

Numerical study of laminar fluid flow in a curved
elliptic duct with internal fins

P.K. Papadopoulos *, P.M. Hatzikonstantinou

Department of Engineering Science, University of Patras, GR 26500 Patras, Greece

Received 30 November 2006; received in revised form 14 October 2007; accepted 8 November 2007
Available online 8 January 2008

Abstract

The fully developed laminar incompressible flow inside a curved duct of elliptical cross-section with four thin, internal longitudinal
fins is studied using the improved CVP method. We present numerical results for the friction factor and an investigation of the effect of
the fin height and the Dean number on the flow. It is found that the friction factor increases for large fins and for high Dean numbers and
that in some cases, it has a strong dependence on the cross-sectional aspect ratio. The thermal results show that the heat transfer rate is

enhanced by the internal fins and that it depends on the aspect ratio.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Internal flows are of primary interest in engineering.
Special attention has been given to ducts of elliptical
cross-section which have increased heat transfer rates com-
pared to circular pipes (Sakalis and Hatzikonstantinou,
2002) and relevant studies have been published by Topako-
glu and Ebadian (1985) and by Dong and Ebadian (1991).

In the present work we use the CVP method (Papadopo-
ulos and Hatzikonstantinou, 2004) to investigate the fully
developed incompressible flow inside a curved duct of ellip-
tical cross-section with four internal fins. Extensive results
of the Dean number, the Nusselt number and the friction
factor are produced over a wide range of values of the cur-
vature, the axial pressure gradient and the aspect ratio of
the cross-section for various fin heights.
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2. Analysis

We consider a toroidal coordinate system as shown in
Fig. 1. The governing equations are transformed to a gen-
eralized (&,n) boundary system, (Thompson et al., 1974)
and we impose orthogonality conditions for the grid on
the boundaries (Thomas and Middlecoff, 1980). The non-
dimensional variables used, are defined by the relations

x,y,2=X,Y,Z)/Dy, x=Dy/R,
u,0,w= (U,V,W)Dy/v, p=PD}/pv
6 = (T - Treference)/(Tsurface - Treference) (1)

where Dy, is the hydraulic diameter and P,p,v,T are the
dimensional pressure, the density, the kinematic viscosity
and the temperature respectively. The relative fin height
H is defined as H = H,/a = H,/b. The governing equations
expressed in the generalized coordinate system with the
non-dimensional variables take the form:
Continuity equation
ou or
a—é“ra—l-JKCu:O (2)
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Fig. 1. Geometry and coordinate system.
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where C=1/(kx + 1) and
U= uy, — vxy, V =ux; — uye, J =Xy, — Xyp; o
a=x, 4y, B=xx, 4y, 7=xi+

The pressure splitting technique (Fletcher, 1991) has been
implemented and dp,/dz denotes the axial pressure
gradient.

At the boundaries (duct wall and fins) we use the no slip
condition for the velocity and the constant temperature
condition. The mean axial velocity, which in the present
non-dimensional form coincides with the Reynolds num-
ber, the Dean number and the product of the friction factor
f with the Reynolds number are given by the formulae
Re=w

J,wd4
==, De:Re\/;E,
Jyd4

e =~ (22 /2w) 8)

The dimensionless bulk temperature 6, the Nusselt num-
ber and the Peclet number are

J,wbd4 1 w00

Nu=—"p
f,wdd’ “ ¢

0. — it
° 41— 0y)w oz

Pe=RePr (9)

3. Numerical implementation

The governing equations were solved on a 48 x 24 mesh
with the CVP method. Convergence was declared when the
following criterion was satisfied at all the nodes

Hd)k+l ‘ /H(bkﬂ

where ¢ stands for velocities u, v, w, the subscripts i,/ repre-
sent the grid nodes in the ¢ and 7 coordinates and the
superscript k is the kth iteration.

In order to assure the accuracy of the present results, we
present in Fig. 2a comparison of our results with the mea-
surements of Mori and Nakayama (1965) for a curved duct
of circular cross-section. The curvature of the duct is
k =0.05 and the flow is considered fully developed with
Re = 2800 in the first case Fig. 2a and Re = 4000 in the sec-
ond case Fig. 2b. It can be seen that the numerical results
are in very good agreement with the experimental measure-
ments. We also conduct a comparison with the numerical
data for a finless curved elliptical duct of Dong and Eba-
dian (1991) who used the SIMPLE method. The compari-

<107’ (10)
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Fig. 2. Comparison between the present numerical results and experimental data from Mori and Nakayama (1965) for flow in a curved pipe with
(a) De = 626 along the horizontal axis (7 = 0) and (b) De = 894 along the horizontal (1 = 0) and vertical (¢ = 0) axis.

Table 1
Comparison of numerical results of the present method with results of
Dong and Ebadian (1991) for a curved finless duct

bla dp./dz K Depresent Depong % Divergence
0.2 -8 x 10* 0.01 162.0 158.1 2.47
0.5 —4 % 10° 0.1 35.08 34.4 1.97
0.5 -1.1x10° 0.01 193.38 192.1 0.66
0.8 —4 % 10° 0.25 51.24 49.7 3.10
0.8 —1.1x10° 0.01 199.12 194.1 2.59

son is presented in Table 1 and it shows a very good agree-
ment of the Dean number values.

4. Results and discussion

The introduction of fins in the elliptic duct affects signif-
icantly the behavior of the flow. Figs. 3a-d show contour
plots of the stream function ¥ of the transversal velocities
and contour plots of the axial velocity w normalized by the
mean axial velocity w in a duct of aspect ratio b/a =0.5
and x = 0.1. The plots correspond to De =49 in Fig. 3a,
De =127 in Fig. 3b and De = 274 in Fig. 3c for fin height

H=0.5 and to De=167.8 in Fig. 3d, for fin height
H=0.75.

Table 2 presents the quantities De and fRe for various
curvatures, axial pressure gradients and fin heights in a
duct of b/a = 0.5. The variation of fRe shows a 6% average
increase as the fin height changes form H =0 to H = 0.25,
29.7% from H =0.25 to H=0.5 and 36.7% from H=0.5
to 0.75. Another observation from Table 2 is that fRe
depends less on the curvature, as the fin height increases.
For constant pressure gradient dp,/dz = —25000 and for
H =0.25 there is a 30% decrease of fRe as the curvature
decreases from 0.25 to 0.01, while for H = 0.75 the decrease
is only 2.5%.

A more general view of the elements that affect the fric-
tion factor can be obtained from Fig. 4. In this plot the fric-
tion factor product is plotted against the Dean number for
axis ratios b/a=10.8, 0.5, 0.2 and for fin heights H =0,
0.25, 0.5, 0.75. The variation of fRe with the Dean number
is essentially linear with few exceptions mainly for low
Dean numbers. Moreover, fRe decreases as the b/a ratio
decreases and the decrease is greater for higher fins. For
the case of H =0.75, it is observed that there is an approx-
imate decrease of 4% for fRe between aspect ratios
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Fig. 3. Contour plots of the stream function ¥ and the normalized axial velocity w/w for b/a = 0.5, H= 0.5 and De = 49, (b) De = 127, (c¢) De = 274, and

for (d) b/a= 0.5, H=0.75 and De = 167.8.

Table 2
Results for constant cross-section ratio b/a = 0.5
dp./dz H=0 H=0.25 H=0.5 H=0.75
De fRe De fRe De fRe De fRe
Kk =0.01
—4 % 10° 11.6 17.2 8.8 22.5 5.1 39.0 2.9 68.0
—25 x 103 61.9 20.1 49.9 25.0 31.7 39.3 18.3 68.0
—80 x 10° 151.4 26.4 127.4 31.3 91.5 43.6 584 68.3
—200 x 10° 303.2 329 264.7 37.7 197.7 50.5 137.3 72.8
Kk=0.1
—4 % 10° 35.0 18.0 27.5 22.9 16.2 39.0 9.3 67.9
—25 x 103 147.3 26.8 124.1 31.8 90.0 439 57.7 68.4
—80 x 10° 3544 35.6 3124 40.4 237.5 53.2 167.1 75.6
k=0.25
—4 % 10° 50.6 19.7 40.8 244 25.5 39.1 14.7 67.6
-25x 10° 203.9 30.6 176.5 353 131.8 47.4 89.5 69.8

bla= 0.8 and b/a = 0.5 and of 23% between aspect ratios
bla=0.8 and b/a=0.2.

Fig. 5 shows the dependence of Nu on De for Pr=17,
aspect ratios b/a=0.8 and b/a=0.5 and various fin
heights. The plot shows an initial region with a steep incli-
nation which fades after a certain value of De for most fin

b/a=0.8
---- b/a=0.5

90

fRe

T T T T T T T
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De

Fig. 4. Friction factor product fRe vs. De for aspect ratios
b/a=0.8,0.5,0.2 and fin heights H = 0,0.25,0.5,0.75.

heights. It is observed that there is an average 11% increase
of Nu from H=0 to H=0.25 15% from H=0.25 to
H=0.5 and 84% from H =0.5 to H=0.75. Taking into
account the corresponding variation for fRe, it is obtained
that small fins can enhance the heat transfer rates without
increasing the friction losses significantly and that large fins
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Fig. 5. Nusselt number variation with De for aspect ratios b/a = 0.8,0.5
and fin heights H = 0,0.25,0.5,0.75 and Pr=1.
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triple the Nusselt number compared to the finless case.
Another observation is that there is a 5% decrease of Nu
as the aspect ratio decreases from b/a = 0.8 to b/fa=10.5
for large fins and 13% for medium fins. The opposite
is observed for the finless case, where the duct with
b/a = 0.5 achieves higher heat transfer rate than b/a = 0.8.

5. Conclusions

In the present investigation it has been found that the
insertion of fins in a curved duct increases the friction fac-
tor product especially for high fins and that fRe depends
strongly on the Dean number. The friction factor product
also decreases for low aspect ratio especially for large fins.
Concerning the heat transfer rate, it is enhanced by the fins
and the increase is maximum for aspect ratio b/a = 0.5.
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